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1. INTRODUCTION 

The operating systems of 1955 were control programs a few thousand bytes long that 

scheduled jobs, drove peripheral devices, and billed users. The operating systems of 1984 are 

much larger both in size and in responsibility. The largest ones, such as Honeywell’s Multics or 

IBM’s MVS, are tens of millions of bytes long. Intermediate ones, such as Bell Labs’s UNIX or 

Digital Equipment’s VMS, are several hundreds of thousands of bytes long. Even the smallest, 

most pared-down systems for personal computers are tens of thousands of bytes long. 

The intellectual content of the field.of operating systems was recognized in the early 

1970s. Virtually every curriculum in computer science and engineering includes a course on 

operating systems. Texts are numerous. The continuing debates - over the set of concepts 

that should be taught and over the proper mix between concepts and implementation projects 

. .  . < *‘. & . I  

- -- are signs of the vitality of the field. - .  . -.ai 

Since 1975, personal computers for home and business have grown into a multi- billion 

dollar industry. Advanced graphics workstations and microcomputers have been proliferating. 

Local networks - e.g., Ethernet, ring nets, wideband nets - and network protocols - e.g., X.25, 

r U L  , TCP/!P -- a!!cw !arge eyskma to be constructed from many small ones. The available n r r n  

hardware has grown rapidly in power and sophistication. 

In view of the rapid advances in power and sophistication of available hardware, it is 

natural to  ask: Will hardware eventually obviate software control programs? Is the intellectual 

core recorded in operating systems texts outmoded? Is operating systems a dying field? In 

this paper we will argue that the power and complexity of the new hardware intensifies the 

need for operating systems, that the intellectual core contains the concepts needed for today’s 

computer systems, and that operating systems are essential. 
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1.1. Definitions of Operating System 

Before looking into these questions, we need to agree on a definition of “operating 

system”. The oldest definition, which says an operating system is a control program jor 

allocating resources among competing tasks describes only a small portion of a modern 

operating system’s responsibilities. This definition is inadequate. 

Among the great problems faced by operating systems designers is managing the 

complexity of operations a t  many levels of detail, ranging from hardware operations that take 

one billionth of a second to software operations that take tens of seconds. An early strategem 

was information-hiding -- confining the details of managing a class of “objects” within a 

module that has a good interface with its users. With information-hiding, the designers can 

protect themselves from extensive reprogramming if the hardware or some part of the software 

changes: the change affects only the small portion of the software interfacing directly with that 

system component. This principle has been extended from isolated subsystems to an entire 

operating system. The basic idea is to create a hierarchy of levels of abstraction, so that a t  

any level one can ignore the details of what is going on at all lower levels. At the highest level 

is the user of the system, who ideally is insulated from everything except what he aims to 

accomplish. As a consequence of these developments, a better definition today is, an operating 

system is a set of software eztensions of primitive hardware, culminating in a virtual machine 

that 8erves a8 a high level programming environment. 

** =: 

Operating systems of this type can support diverse environments: programming, text 

processing, real-time processing, office automation, database, and hobbyist. 
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1.2. C*wz-ezt. Operatirag Systems - 

Most operating systems for large mainframes are direct descendants of third generation 

systems - e.g., Honeywell Multics, IBM MVS and VM/370, and CDC Scope. These systems 

introduced important concepts such as timesharing, multiprogramming, virtual memory, 

sequential processes cooperating via semaphores, hierarchical file systems, and device 

independent I/O [Dennf 1, Denn761. 

During the 196Os, there were many projects to construct timesharing systems and test the 

many new operating systems concepts. These included MIT’s Compatible Time Sharing 

System (CTSS), the University of Manchester Atlas, the University of Cambridge Multiple 

Access System (CMAS), IBM TSS/360, and RCA Spectra/70. The most ambitious project of 

all was Multics (Multiplexed Information and Computing Service) for the General Electrical 

645 (later renamed Honeywell 6180) processor [Orga72]. Multics simultaneoualy tested new 

concepts of processes, interprocess communication, segmented virtual memory, page 

replacement, linking new segments to a computation on demand, automatic multiprogrammed 

load control, access control and protection, hierarchical file system, device independence, 1 /0  

redirection, and a high-level language shell. 

Another important concept of third generation systems was the virtual machine, a 

simulated copy of the host. Virtual machines were first tested around 1966 on the M44/44X 

project at the IBM T. J. Watson Research Center. In the early 19709 virtual machines were 

used in IBM’s CP-67 system, a time sharing system that assigned each user’s process to its own 

virtual copy of the IBM 360/67 machine. This system has been moved to the IBM 370 

machine and is now called VM/370 [Gold74, IBM731. Beeause each virtual machine can run a 

different copy of the operating system, VM/370 is effective for developing new operating 

systems within the current operating system. But because virtual machines are well isolated, 
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communication among them is expensive and awkward. 

Perhaps the most influential current operating system is UNIX, a complete reengineering 

of Multics for the DEC PDP family of computers. It is an order of magnitude smaller than 

Multics. It retains the most useful concepts of Multics -- processes, hierarchical file system, 

device independence, 1 / 0  redirection, and a high-level language shell. It dispensed with virtual 

memory and the detailed protection system; it introduced the pipe. It offered a large library of 

utility programs that were well integrated with the command language. Most of UNIX is 

written in a high-level language, C, which has allowed it to be transported to a wide variety of 

processors, from mainframes to personal computers (Ritc74, Kern841. 

- 

In systems consisting of multiple UNIX machines connected by a high-speed local 

network, it is desirable to hide the locations of files, users, and devices from those who do not 

wish to deal with those details. LOCUS is a distributed version of UNIX that accomplishes p .  

this by means of a directory hierarchy that spans the entire network [PopeBl]. 

In recent years a large family of operating systems has been developed for personal 

computers. These include MS-DOS, PC-DOS, APPLEDOS, CP/M, Coherent, and Xenix. 

These are all simple systems with limited function, designed for 8- and 16-bit microprocessor 

chips with small memories. In many respects, the development of personal computers is 

repeating the history of mainframes in the early 1960s - for example, multiprocess operating 

systems for microcomputers have appeared only recently in the forms of pared-down UNIX-like 

systems such as Coherent and Xenix. Because only the large firms can sell enough machines to 

make their own operating systems viable, there is strong pressure for standard operating 

systems. The emerging standards are PC-DOS, CP/M, and UNIX. 

Research on operating systems continues. There are numerous experimental systems 

exploring new concepts of system structure and distributed computation. The operating 
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system for the Cambridge ZAP machine expioiia ihe hardware’s microcode siippori for 

capability addressing to implement a large number of processes in separately protected 

domains. Data abstraction is easy to implement on this machine (Wilk791. 

StarOS is an operating system for the Cm* machine. Its central purpose is the supportof 

the “task force,” a group of concurrent processes cooperating in a computation. StarOS also 

uses capabilities to control access to objects [Jone79]. Another operating system for the Cm* 

machine is Medusa. It is composed of several “utilities”, each implementing a particular 

abstraction such as a file system. Each utility can-include several parallel processes running on 

separate processors. There is no central control [OustBO]. 

Grapevine is a distributed database and message delivery system used widely within the 

Xerox Corporation. The network contains special nameservers that can find the locations of 

users, groups, and other services when given their symbolic names. There is no central control 

and it can survive the failures of the nameserver machines [Birr82]. Because it does not 

provide all the services of a high-level programming environment, Grapevine is not a true 

operating system. 

-‘ 

The “V kernel” is an experimental system aiming for efficient, uniform interfaces between 

system components. A complete copy of the kernel runs on each machine of the network and 

hides the locations of files, devices, and users. V is a descendent of THOTH, an earlier system 

worked on by the author of V [Cher84, Cher821. 

The Provably Secure Operating System (PSOS) is a level-structured system whose high- 

level code has been proved correct in the context of a rigorous hierarchical design methodology 

developed at SRI International [Neum80]. Although it was intended for secure computing, 

PSOS explored many principles that can help any operating system toward the goal of 

provable correctness. 
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These examples demonstrate that the new technology has created new control problems 

for operating systems designers to solve. The need for operating systems is stronger than ever. 

2. MODEL OF AN OPERATING SYSTEM 

The hierarchical structure of a model operating system separates its functions according 

to their characteristic time scales and their levels of abstraction. Table 1 shows an 

organization spanning fifteen levels. It is not a model of any particular operating system but 

rather incorporates ideas from several systems. It includes facilities for distributed processing. 

Each level is the manager of a set of “objects”, which can be hardware or software and 

whose nature varies greatly from level to level. Each level also defines operations that can be 

carried out on those objects. The levels obey two general rules: 

1. Hierarchy. Each level adds new operations to  the machine and hides selected- operations 

at lower levels. The set of operations visible at a given level form the instruction set of an 

abstract machine. Hence a program written a t  a given level can invoke visible operations 

of lower levels but no operations of higher levels. 

2. Information Hiding. The details of how an object of given type is represented or where it 

is stored are hidden within the level responsible for that type. Hence no part of an object 

can be changed except by applying an authorized operation to it. 

The principle of data abstraction embodied in the levels model traces back to Dennis and 

Van Horn’s 1966 paper, which emphasized a simple interface between users and the kernel 

[Denn66]. The first instance of a working operating system whose kernel spanned Pveral levels 

was reported by Dijkstra in 1968 [Dijk68]. The idea has been extended to generate families of 

operating systems for related machines (Habe761 and to increase the portability of an operating 
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TABLE 1: An Operating System Design Hierarchy. 
~- 

.eve1 Name Objects Example Operations 

Shell User programming environment 

sca lu  data, array data 

statements in shell langaage 15 

14 

13 

12 

11 

10 

9 

Dircetoricr D i r e c t o h  create, destroy, attach, 

detach, eenrch, lirt 

U r r  Proccua Uaer pmceu  fork, quit, kill, suspend, 

resume 

open, close, read, write Stream I/O 

Devica 

F i i  Sptem 

Streruns 

External devicer and 
pcripheralr such M 

printer, dupky, keyboud 

Fila 

create, destroy, open, c k ,  

read, write 

create, destroy, open, dac, 
red ,  write . -  

Communications P i p s  create, datroy, open, c b ,  

r e d ,  write 

Capabiit ia 

Virtual Memoq 

Local Secondary Store 

Primitive Procaw 

In t empt .  

Proeedura 

Instruction Set 

Electronic Circuits 

CapAbiitia create, validate, attenuate 

read, write, fetch 

r e d ,  write, allocate, free 

Segments 

Blocb of data, 
device channelr 

suspend, mume ,  

wait, signal 
Primitive proceu, 

aemaphom, ready lirt 

invoke, mark, unmark, rets Fault handler p r o ~ m r  

mark-stack, call, return Procedure r p m t r ,  
Call stack, d h p k y  

Evaluation stack, 

microprogram interpreter, 

load, store, un-op, bin-op 

braach, array-ref, etc. 

Registen, g a b ,  

b u m  e k .  

clear, trander, compkmeml 
activate, etc. 
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system kernel (Cher821.. The Provably Secure Operating System (PSOS) is the first complete 

level-structured system reported and formally proved correct in the open literature [Neum80]. 

We now turn to a brief summary of each level in Table 1. Greater detail follows in later 

sections. 

2.1. The Single-Machine Levels: 1-8 

Levels 1-8 are called single- machine  levels because their operations are well understood 

from primitive machines and require little modification for advanced operating systems. 

The lowest levels include the hardware of the system. Level 1 is the electronic circuitry, 

where the objects are registers, gates, memory cells, and the like, and the operations are 

clearing registers, reading memory cells, and the like. Level 2 adds the processor’s instruction 

set, which can deal with somewhat more abstract entities such as an evaluation stack and an 

array of memory locations. Level 3 adds the concept of a procedure and the operations of call 

- 
. y*- 

and return Level 4 introduces interrupts and a mechanism for invoking special procedures when 

the processor receives an interrupt signal. 

The first four levels correspond roughly to the basic machine as it is received from the 

manufacturer, although there are some interactions with the operating system. For example, 

interrupts are. generated by hardware but the interrupt-handler routines are part of the 

operating system. 

Level 5 adds primitive processes, which are simply single programs in the course of 

execution. The information required to specify a primitive process is its stateword, a data 

structure that can hold the values of the registers in the processor. This level provides a 

context switch operation, which transfers the attention of of a processor from one process to 

another by saving the stateword of the the first and loading the stateword of the second. This 
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level contains a scheduier that seiects, from a “reudy :i&” of avai:ab!e pioe-, the zext 

process to run after the current process is switched off the processor. This level also provides 

semaphores, the special variables used to cause one process to stop and wait until another 

process has signalled the completion of a task. This level has a simple hardware 

implementation (Denn81J. Primitive processes are analogous to system processes in PSOS and 

lightweight procesecs in LOCUS. 

Level 6 handles access to the secondary-storage devices of a particular machine. The 

programs at, this level are responsible for operations such as positioning the head of a disk 

drive and transferring a block of data. Software at a higher level determines the address of the 

data on the disk and places a request for it in the device’s queue of pending work; the 

requesting process then waits at a sempahore until the transfer has been completed. 

Level 7 is a standard virtual memory, a.scheme,that gives the programmer the illusion of w e - -  

having a main memory space large enough to hold the program and all its data even if the 

available main memory is much smaller [Denn70]. Software at this levei handles the interrupts 

generated by the hardware when a block of data is addressed when it is not present in the main 

memory; this software locates the missing block in the secondary store, frees space for it in the 

main store, and requests Level 6 to read in the missing block. 

Level 8 implements capabilitiee, which are unique internal addresses for software objects 

definable at higher levels. This level allows capabilities to be read, but not altered. This level 

provides a validate operation that enables the programmer of higher-level procedures to verify 

that actual parameters are of the expected types. 

Up through level 8, the operating system deals exclusively with the resources of a single 

machine. Beginning with the next level, the operating system encompasses a larger world 

including peripheral devices such as terminals and printers and also other computers attached 
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to the network. In this world, pipes, files, devices, user processes, and directories can be shared 

among all the machines. 

2.2. The Multi-Machine Levels: 9.14 

Every object in the system has two names: its “external name”, a string of characters 

having some meaning to users, and its “internal name”, a binary code used by the system to 

locate the object. The mapping from external to internal names is controlled by the user 

through directories. The mapping from internal names to physical locations is controlled by 

the operating system, giving it the ability to move objects among several machines without 

affecting any user’s ability to use those objects. This principle, called delayed binding, was 

important in third generation operating and is even more important today [Denn’ll]. 

To hide the locations of all sharable objects, both external and internal names must be 
4. 

L 

global, Le., they can be interpreted on any machine. Unique external names can be constructed 

as pathnames in the directory hierarchy (defined at Level 14). Unique internal names are 

provided by  capabilities (Level 8). If the local network communication system (Level 9) is 

efficient, software at the higher levels can obtain access to a remote object with little penalty. 

Level 9 is explicitly concerned with communication between processes, which can be E 
! 
I arranged through a single mechanism called a pipe. A pipe is a one-way channel: a stream of 

data flows into one end and out of the other. A request to read items is delayed until they are 

actually present in the pipe. A pipe can equally well connect two processes on the same 

‘ 

machine or on different machines. A set of pipes linking levels in all the machines can serve as 

a broadcast facility, which is useful for finding resources that might be anywhere in the 

network [Bogg83]. Pipes are implemented in UNIX [Ritc74] and have been copied in recent 

systems such as iMAX [Orga83] or XINU [Come84]. 
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---_ Levei 10 provides for iong-term storage of named fiies. Whereas Levei 6 deais with disk 

storage in terms of tracks and sectors - the physical units of the hardware - Level 10 deals 

with more abstract entities of variable length. Indeed a file may be scattered over many 

noncontiguous tracks and sectors. To be examined or updated, a file’s contents must be copied 

between virtual memory and the secondary storage system. If a file is kept on a different 

machine, Level-10 software can create a pipe to Level 10 on the file’s home machine. 

Level 11 provides access to  external input and output devices such as printers, plotters, 

and the keyboards and display screens of terminals. There is a standard interface with all 

these devices and again a pipe can be used to gain access to a device attached to another 

machine. 

Level 12 provides a means by which user processea can be attached interchangeably to  

. -:. pipes, files, or devices for input and output. The idea is to  make each of the fundamental - . -  

operations of Levels 9,10, and 11 (OPEN, CLOSE, READ, and WRITE) look the same so 

that the author of a program need not be concerned with the differences among these objects. 

This is achieved in two steps. First, the information contained in pipes, files, and devices is 

regarded simply as streams of bytes; requests for reading or writing move segments of data 

between streams and a user process. Second, a user process is programmed to request all input 

and output via ports, which are attached by the open operation a t  run time to specific pipes, 

files, or devices. 

Level 13 implements user processes, which are virtual machines executing programs. It is 

important to distinguish the user process from the primitive process of Level 5. All the 

information required to define a primitive process can be expressed in the stateword that 

records the contents of the registers in the processor. A user process includes not only a 

primitive process, but also a virtual memory containing the program and its work space, a list 
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of arguments supplied as parameters when the process was started, a list of objects with which 

the process can communicate, and certain other information about the context in which the 

process operates. A user process is much more powerful than a primitive process. 

Level 14 manages a hierarchy of directories that catalogue the hardware and software 

objects to which access must be controlled throughout the network: pipes, files, devices, user 

processes, and the directories themselves. The central concept of a directory is a table that 

matches external names of objects with capabilities containing their internal names. A 

hierarchy arises because a directory can include among its entries the names of subordinate 

directories. Level 14 ensures that the subhierarchies encached a t  each machine are consistent 

with one another. 

The directory level is responsible only for recording the associations between the external 

names and capabilities; other levels manage the objects themselves. Thus when a directory of 

devices is searched for the string “laser”, the result returned is merely a capability for the laser 

printer. The capability must be passed to a program a t  Level 11, which handles the actual 

transmission to that printer. 

Level 15 is the “shell”, so called because it is the level that separates the user from the 

rest of the operating system. The shell is the interpreter of a high level command language 

through which the user gives instructions to  the system. The shell incorporates a listener 

program that responds to a terminal’s keyboard; it parses each line of input to  identify 

program names and parameters; it creates and invokes a user process for each program and 

connects it as needed to pipes, files, and devices. 
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2.3. General Comments on Levei Structure 

The level structure is a hierarchy of functional specifications. Its purpose is to impose a 

high degree of modularity and enable incremental verification, installation, and testing of the 

software. 

In a functional hierarchy, a program at a given level may directly call any visible 

operation of a lower level. No information flows through any intermediate level. The level 

structure can be completely enforced by a compiler, which can insert procedure calls or expand 

functions in-line [Habe76]. A recent example of its use is in XINU, an operating system for a 

distributed system based on LSI 11/02 machines (Come841. 

It is important to distinguish the level structure discussed here from the layer structure of 

the IS0  (International Standards Organization) model of long-haul network protocols 

(Tane8lj. In the IS0  model, information is passed down through all the layers on the sending 

machine and back up through all the layers on the receiving machine. Each layer adds 

overhead to a data transmission, whether or not that overhead is required. Models for long- 

haul network protocol structure may not be efficient in a local network fPope811. 

.* 

A significant advantage of a functional levels over information-transferring layers is 

efficiency: a program that does not use a given function will experience no overhead from that 

function’s presence in the system. For example, procedure calls will validate capabilities only 

when they are expected. Common objects (such as pipes, files, devices, directories, and user 

processes) are implemented. by their own levels rather than as new “types” within a general 

. type-extension scheme [Wulf81]. 

Each level should be able to locate local objects by their internal names without having to 

rely on a central mapping mechanism. This is not only a step toward reliability in a 

distributed network, but also efficiency because central mechanisms are prone to be 
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bottlenecks. 

Operating system designers ought to take reasonable steps to  verify that each level of the 

operating system meets its specifications. This too serves efficiency as well as reliability: run- 

time checks need be included in system procedures only for conditions that cannot easily be 

verified a priori. Thus, system procedure calls must check at run time that expected 

capabilities are present as parameters because the calling programs may be unverified; but 

other aspects of parameter type checking can be performed by a compiler. 

In the.following sections we will give more detail about the mechanisms from the 

capability level [Level 8) upwards. 

3. DISTRIBUTED CAPABILITIES (Level 8 )  

The external names of sharable objects are character strings of arbitrary length having ‘ V  

meaning to human users. Because these strings are difficult to manipulate efficiently, the 

operating system provides internal names for quick access to  objects. One purpose of Level 8 is 

to provide a standard way of representing and interpreting internal names for objects. 

To prevent a process from applying invalid operations to an object whose internal name it 

knows, the operating system can attach a type code and an access code to an internal name. 

The combination of codes (type, access, internal-name) is called a capability. All processes are 

prevented from altering capabilities. The system assumes that the very fact that a process 

holds a capability for an object is proof of its authorization to use that object; processes are 

responsible for controlling the capabilities they hold. 

The simplest way to protect capabilities from being altered is to tag the memory words 

containing them with a special bit and to permit only one instruction, the “create-capability” 

instruction, to set that bit [Fabr74, Wilk79). The IBM System 38 is a recent example of an 
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efficient system using tags to disiing&& c@d%cs f:=m ether & j ~ t s  ir? memory IT.evv841. L-- , - -, 

Capabilities were first proposed as an efficient method of implementing an object-oriented 

operating system [Denn66]. This has continued to be the main reason for using them 

IWulf81, Levy84, Orga831. 

All existing implementations of capabilities are based on a central mechanism for 

mapping the internal name to an object. These mappings are direct extensions of virtual 

memory addressing schemes [Denn76, Fabr741. Unfortunately, a central mapping scheme 

cannot be used with a distributed system whose component machines may fail. So the 

responsibility for mapping must be distributed by allowing each the procedures of Levels 9-14 

on each machine to read and interpret locally the fields within validated parameter 

capabilities. 

The storage structure and mapping scheme for capabilities is illustrated in Figure 1. The . 

name field of a capability of type T consists of a code Mfor the machine on which the 

capability was created and an index number I. The machine number is needed because some 

Capabilities (those for open pipes, files, and devices) can only be used on the issuing machine. 

The access code specifies which of the 2'-type operations can be applied to the object. The 

index number I is used by the level in charge of T-type objects on machine M to address a 

descriptor block for the given object. The descriptor block records control information about 

an object, times and dates of creation and last update, and current size and attributes of the 

object. The location of the descriptor block denotes the location of the object - moving the 

descriptor block from one machine to another effectively moves the object. 

The procedures implementing operations at Levels 9-15 must conform to certain 

standards that ensure the proper use of capabilities. One is an agreement on the codes for the 

object types; eight are listed in Table 2. We will use the notation T-cap to  denote a 



July 10, 1984 16 

name = (machine#,index) 3 
Process Type Access Name 

Memory Segment 
' Level 

- 
Block 

Storage 
Level 

FIGURE 1. The storage structure for representing object consists of a chain starting with a 
capability, through a local map under the control of the object's level, through a descriptar 
block, to the object itself. A change in location of the object requires no change in any 
capability. The index numbers are generated locally by the level when it creates objects. In 
this example, the process holds two capabilities of type T; one of the objects is in a segment in 
virtual memory and the other is in a block of secondary storage. 
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capability of type T where T i s  one of the abbreviations in the table (e.g. fiie-capj7 

The remaining standards concern the creation of capabilities pointing to new objects and 

the application of specific operations to those objects. Suppose Level L (L > 8) is the manager 

of T-type objects. This level contains a procedure to create new objects of type T and one or 

more procedures to apply given functions to objects of type T. The create operation must use 

a call of the form 

T-cap := CREATE-T(initia1-value) 

This procedure performs all the steps required to set up the storage for a new object of type T: 

it obtains space in secondary storage for the object and stores in i t  the given initial value, it 

sets u p  a descriptor block, it finds an unused index and sets up  the entry in the local map, and 

finally it creates a capability of type T (denoted “ T a p ” ) .  

TABLE 2: Capability Type Marh and their Abbreviations. 

Level Type mark Abbreviation 

14 d m t o y  dir 

15 u.cr proccu UP 
11 device dev 

open device 0P-d- 

open f& op-file 

open pipe o p g i p e  

10 file fde 

1 9  PiPC PiPC 
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Creating a capability is a critical operation. Level 8 implements a special operation for 

this purpose: 

T-cap := CREATE-CAP(I) 

where l i s  the local index number chosen by Level L. When used inside the CREATE-T 

operation on machine M, CREATE-CAP constructs a capability (T, A,  M, I), sets to 1 the 

capability bit of the memory word containing it, and returns the result. The code for Mcomes 

from a register in the processor. The code for A is the one denoting maximum access. The 

code for T comes from a field in the program status word (PSW), a processor register that also 

contains the program counter of the current procedure. The compilers must be set up to  

generate type(PS W)= T only for the CREATE-T procedure and type(PS W)=null for all other ~ 

procedures. CREATE CAP fails if executed when type(PSW)=null. -_ - *  
- 

The procedures for applying operations to a given object have the generic form 

APPLY-OP(T-cap, parameters) 

which means that OP(parameters) must be applied to the object denoted by T-cap. The 

compiler can validate that the first actual parameter on any call to A P P L Y O P  is indeed of 

type T by using another operation of Level 8, called VALIDATE, which checks that this 

parameter is a capability whose type code is T and whose access code enables operation OP. 

VALIDATE can also be used to verify the presence of other capabilities among the other 

parameters. 

e 

A procedure may reduce the access rights of a capability it passes to another procedure by 

using the Level-8 operation ATTENUATE. 
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Table 3 summarizes the operations impiemented at Levei 8. 

19 

4. COMMUNICATIONS (Level 9) 

The communications level provides a single mechanism, the pipe, for moving information 

from a writer process to a reader process on the same or different machines. The most 

important property is that the reader must stop and wait until the writer has put enough data 

into the pipe to fill the request. Level 9 gives the higher levels the ability to move objects 

among the nodes of the network. 

The external interface presented by the communications level consists of the commands in 

Table 4. When two communicating processes are on the same machine, a pipe between them 

can be stored in shared memory and the READ-PIPE and WRITE-PIPE operations are 

implemented the same as the send and teccivc operations for “message queues” [Brin73]. _ a +  

TABLE 3: Specification of Capabdity Operatiom (Level 8). 
i 

I/ Form of call Effect I 

T-cap := CREATE-CAP(I) If the typcmark in the current PSW u non-null, create a 
new capability with type fnld set to that mark, ace- code 
maximum, machine field the local machine identifHr, and 
index I. 

V e m  the capnhility at the cdkr’o virtud addreoo p. For at 
least one i=l, ..., I the following murt be true: the capp.bfity 
cont.ino Tiin ita type field and permito u c e n  .i. If Ti 
denoteo o p g i p e .  op-fde, or op-dev, the machine field 
murt match the identifier of the local machine. (Fail. if 
thew conditionr are not met.) 

VALIDATE(p, I, ( T l , d ) ,  ..., (Ta,aa)) 

cap := ATTENUATE(cap, mark) Returnr a copy of the given capability with the seceu field 
replaced by the bitwioe AND of mark and the acceu field 
from cap. 
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Form of call Effect 

20 

pipe-cap := CREATE-PIPE( ) 

TABLE 4: Specification of Communication Level Interface (Level 9). 

DESTROY -PIPE( pipe-cap) 

,pgipe-cap := OPEN-PIPE(pipe-cap, m) 

READ-PIPE 
WRITE-PIPE 
CLOSE-PIPE 

opgipe-cap := BROADCAST(mrg) 

Creates a new empty pipe and returns a capability for it. (If 
the caller is a urer process, it can store this capability in a 
directory entry and make the pipe available throughout the 
sptem.) 

Destroy the given pipe (undo a create pipe operation). 

Opens the pipe named by the pipe capability by allocating 
itorage and retting up a dewriptor block. Initially, the pipe 
ir empty. If rw=writc, the open-pipe capability hM its write 
permimion set and can be ured only by the procerr at the 
input end of the pipe. If rw=red, the open-pipe capability 
h a  its read permirrion set and can be ured only by the 
procesr at the output end of the pipe. Docr not return until 
both reader and writer have requested connections. (Fail# if 
the pipe ir already open for writing when rw=wrilc or 
reading when rw=red.) If both render and receiver ere on 
the same machine, the open-pipe descriptor block will 
indicate that shared memory c a n  be ured for the pipe; 
otherwise a network protocol must be ured. 

There have the same effects M the READ, WRITE, and 
CLOSE operationr described in the rection on stream I/O. 

Broadcast a message to all type managen in the network 
that manage objectr of the same type M the  c d h g  local 
type manager. Returnr an open pipe capability for reading 
responses. 

When the two processea are on different machines, the communications level must 

implement the network protocols required to move information reliably between machines. 

(See Figure 2.) These protocols are much simpler than long-haul protocols because congestion 

and routing control are not needed, packets cannot be received out of order, fewer error types 

are possible, and errors are less common [PopeBl]. 

The read and write operations become ambiguous unless both a reader process and a 

writer process are connected to a pipe. Should a writer be blocked from entering information 

until the reader opens its end? What happens if either the reader or writer breaks its 
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I Machine B 

I Process 2 

Machine A 

Process 1 

I Communications \ I I 
I& 

Level 

Stream Sending 
Buffer 

T ’;> Process 

I Packets 
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I 
I 
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I 
I 
I 
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I 
I 
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Stream Receiving 
Buff- 

Receive 
Process 

I Packets 

FIGURE 2. A netwak protocol muat be need when two procewee connected by a pipe are on 
different machinee. The WR.I!I’E nqacrts of the sender append segment. to a stream awaiting 
trammission. The sender proceee t r d t s  the stream ae a eequence of packets, which are 
converted back into a atream and placed in the receiving buffer. Each READ m e a t  of the 
receiver waits until the requested amount of data is in the buffer then return8 it. 

connection? Questions like these are dealt with by a connection protocol. A simple connection 

protocol is called rendezvous on open and close: 

1. The open-for-reading and the open-for-writing requests may be called at different times 

but both returns are simultaneous. 
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2. The close operation, executed by the reader, shuts both ends of the pipe; executed by the 

writer is deferred until the reader empties the pipe. 

A pipe capability can be stored in a file or a message and passed to another machine over 

an existing open pipe or by broadcast. A pipe capability can also be listed in a directory (to be 

discussed later), making the pipe a global object. (In this case it is like a “FIFO file” in 

System-5 UNIX [&1183]. ) 

The communications level also contains a broadcast operation to permit Levels 10, 11, 

and 12 to request mapping information from their counterparts on other machines. For 

example, if the file level on one machine cannot locally open the file named by a given. 

capability, it can broadcast that capability to the file levels of other machines; the machine 

actually holding the file responds with enough information to allow the broadcaster to 

complete its pending open operation. 

5. FILES (Level 10) 

Level 10 implements a long-term store for files. A file is a named string of bits of known, 

but arbitrary length and is potentially accessible from all machines in the network. The 

operations for files are summarized in Table 5. 

To establish a connection with a file, a process must present a file capability to the 

OPEN-FILE operation, which will find the file in secondary storage and allocate buffers for 

transmissions between the file and the caller. The transmissions themselves are requested by 

READ-FILE and WRITE-FILE operations. Each read operation copies a segment of 

information from the file to the caller’s virtual memory and advances a read pointer by the 

length of the segment. Each write operation appends a segment from the caller’s virtual 
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TABLE 5: Speciflcation of Files Level Interface (Level 10). 

Form of call Effect 

file-cap := CREATE-FIL.E( ) 

DES TROY-FILE(file-cap) 

op-file-cap := OPEN-FILE(fik-cap, m) 

READ-FILE 
WRITE-FILE 
CLOSE-FILE 

RE W IND(op-file-cap) 

ERASE( op-file-cap) 

Createa a new empty file and returns a capability for it. (If 
the caller u a uwr p r ~ ~ c u ,  it can store this capability in a 
directory entry and make the fde availabk throughout the 
syrtem.) 

Destroy the given file (undo a createfile operation). 

Opens the fie named by the file capability by allocating 
storage for buffen and setting up a dacriptor block. The 
value of R (read, write, or both) u put in the acccu fnld of 
the  open-file capability. The read pointer b wt to e r o  and 
the write pointer to  the file’s length. (Failm if the fh b 
already open.) 

These have the same effects u the READ, WRITE, and 
CLOSE operations dacribed in the eection on stream I/O. 

R e u t  red pointer to  zero. 

Set fik kngth u d  write pointer to zero; nkuc secondary 
storage blockoccupied by the fde. 

memory to the end of the file. 

In a multi-machine system, the file level must deal with the problem of nonlocal files. 

What happens when a process on one machine requests to open a file stored on another 

machine? There are two alternatives: 

1. Open a pair of pipes to Level 10 on the file’s home machine; read and write requests are 

relayed via the forward pipe for remote exeution; results are passed back over the reverse 

pipe. (This is called remote open.) 

2. Move the file from its current machine to the machine on which the file is being opened; 

thereafter all read and write operations are local. (This is called file migration.) 
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Both methods are feasible. An instance of remote open is in the Berkeley COCANET system 

(Rowe821. An instance of migration is in the Purdue STORK file system (Pari831. 

The open connection descriptor block for a file, which is addressed by an open-file 

capability, indicates whether read and write operations can be performed locally or must 

interact with a surrogate process on another machine. In the latter case, the required open- 

pipe capability will be implanted in the descriptor block by the open-file command. 

Figure 3 illustrates the types of capabilities generated and used during a typical file- 

editing session. 

One important improvement to the basic file system is to allow multiple readers and 

writers by building in to the read and write operations a solution to the “readers and writers” 

synchronization problem IHolt78). Another is to use a version control system to automatically 

retain different revisions of a file; the file system can then provide access to the older versions 

when needed [Tich82]. 

’ 

8. DEVICES (Level 11) 

The devices level implements a common interface to a wide range of external input and 

output devices -- for example, terminal displays and keyboards, printers, plotters, time-of-day 

clock, and optical readers. The interface attempts to hide differences among devices by making 

input devices appear as sources of data streams and output devices appear as sinks. Obviously, 

the differences cannot be completely hidden -- for example, cursor-positioning commands must 

be embedded in the data stream sent to a graphics display -- but a surprising amount of 

uniformity can be achieved. 

Corresponding to  each device is a device driver program that translates commands at the 

interface to instructions for operating that device. A considerable amount of effort may be 
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User’s 
Virtual 
Memory Program 

Buffer 

Descriptor 
Block 

5 

FIGURE 3. The steps of an editing session generate and use various capabilities. 1) CanVert 
the external name &ring to a capability, el;  this can be done by a dbectary-aeeueh e-d. 
2) Open the file faa reading and writing by the command ed := OPEN FILE (el ,  RW). 3) 
Copy the fik into a buffer by the command READ-FILE(ed, B, elf). 4)Edit the content. of 
the buffer. 5) Replace the older redm of the file by the pair of cmnman& “EUSE(c2); 
WRITE FILE(&, B, L)”, where L is the length ofthe buffer. 6) Cloee the fUe by the - 
commurd CLOSEFILE( ed). 
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required to constructla reliable, robust device driver. When a new device is attached to+,he 

system, its physical address is stored in a special file accessible to the device drivers. 

Table 6 summarizes the interface for external devices. 

7.  STREAM 1 / 0  (Level 12) 

An important principle adopted in the hypothetical operating system we are describing 

here is input-output independence. A t  Levels 9, 10, and 11 the same fundamental operations 

(namely OPEN, CLOSE, READ, and WRITE) are defined for pipes, files, and devices. 

Although writing a block of data to a disk calls for a sequence of events quite different from 

that needed to supply the same data to the laser printer or to the input of another program, 

.. 

the author of a program does not need to be concerned with those differences. All read and 

TABLE 6: Specification of Devices Level Interface (Level 11). 

Form of call Effect 

dev-cap := CREATE-DEV(type, addrera) Returnr a capability for a device of the given type at the 
given d d r e u .  The accerr code of the returned capability 
will not include “W” if the device is read-only or ”R” if t he  
device u write-only. 

DESTROY -DEV(dev-cap) Detach the given device from the system (undo a create- 
device operation). 

op-dev-cap := OPENDEV(dev-cap, rw) Opens the device named by the device capability by 
allocating storage for buffen and wttiag up a deicriptor 
block. The value in the access field of the open-device 
capability is the logical AND of rw and the accem code of 
the device capability. (Fail6 if the device is already open.) 

READ-DEV 
WRITE-DEV 
CLOSE-DEV 

There have the same effects M the READ, WRITE, and 
CLOSE operationr dercribed in the clection on stream I/O. 

.. 
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write. statements in .a program can refer to input and -output ports, which are attached to 

particular files, pipes, or devices only when the program is executed. 

This strategy, which is an instance of delayed binding, can greatly increase the versatility 

of a program. A library program (such as the pattern-finding “grep” program in UNIX) can 

take its input from a file or directly from a terminal and can send its output to another file, to 

a terminal, or to a printer. Without delayed binding, each program would have to be written 

to handle each possible combination of source and destination. 

A common model of data must be used for pipes, files, and devices. The simplest 

possibility is the stream model in which these objects are media for holding streams of bits. 

Corresponding to each of these objects is a pair of pointers, R for reading and W for writing; R 

counts the number of bytes read thus far and similarly for W. Each read request begins at 

position R and advances R by-the number of bytes read. Similarly, each write-request begins 

at position W and advances W by the number of bytes written. 

*’T 

The blocks of data moved by read or write requests are called segments; seg(z,n) denotes a 

contiguous sequence of n bytes beginning at position z in a given data stream. The exact 

intcrpret.ation of a read (or write) request depends on whether the segment comes from a pipe, 

file, or device. For example, a read request can only be applied at the output end of a pipe and 

the reader is required to wait until the writer has supplied enough data to fill the request. An 

output-only device, such as a laser printer, cannot be read and an input-only device, such as a 

terminal keyboard, cannot be written. 

The OPEN operation of Level 12 returns an op-T-cap, corresponding to a given T-cap 

for T, a pipe, file, or device. The op-T-cap represents an active connection through which 

data may be passed efficiently to and from the object. The READ and WRITE operations 

request segment moves across such a connection. The CLOSE operation breaks the connection. 

- -  
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Because the-stream model has already been incorporated into the pipes, files, and devices 

levels, the only new mechanism is a way of switching from a Level-12 operation to its 

counterpart in the level for the type of object connected to  a port. For example, 

OPEN( T-cap, rw) means 

CASE T OF 
pipe: RETURN OPEN-PIPE(T-cap, rw); 
file: RETURN OPEN-FILE(T-cap, rw); 
dev: RETURN OPEN-DEV(Tcap, rw); 
ELSE: error; 

END CASE 

Table 7 summarizes the interpretations of the four operations of OPEN, CLOSE, READ, 

and WRITE for the three kinds of input-output object. 

The stream model is not used in every operating system. For example, in Multics, 

segments are explicit components of the virtual memory; there-is no need f o r a  separate 

concept of file because segments are retained indefinitely until deleted by their owners 

[Orga72]. In Multics the four operations of Table 7 are implicit. The first time a process refers 

to a segment, a “missing-binding” interrupt causes the operating system to load and bind that 

segment to the process. The process can thereafter read or write the segment using the 

ordinary virtual-addressing mechanism. Certain segments of the address space are 

permanently bound to devices; reading or writing those segments is equivalent to reading or 

writing the device. There is no concept of pipe, but the interprocess communication 

mechanism allows a data stream to be transmitted from one process to another. 

*. 

8. USER PROCESSES (Level 13) 

A user process is a virtual machine containing a program in execution. It consists of a 

primitive process, a virtual memory, a list of arguments passed as parameters, a list of ports, 
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TABLE 7: Semantic. of 1/0 Operations on Objects (Level 12) 

Pipe 

Ver‘lry that T_cq refen 
to  M unopened pipe. Ur 
OPENJWE(T_cap, R) 
to init-* an open-pipe 
dneriptor bloek in which 
R = W = 0; return the 
o p s 4 u w .  

Invoke 
WRIT~PPE(OPS~P~_E~P,  
A, a) to copy MI (a ,a ) to 
ng ( W ,a ) and advance 
W to R + a .  (MAY 
awaken waiting d e r ) .  

If the pipe contains a 

that ruder the r e d i n g  
= p e n t  in the pipe. 
Invoke 
CLOSl$-pIPE(opgipem) 
to d u l k c a t e  the open- 
pipe descriptor b b e t  

waiting reader, return to 

File 

Verify that T_cap refers 
to an unopened tile. Uw 
OPEN-lE(T_cap. cw) 
to init- an open-file 
deuriptor b k k  in which 
R =Oand W = L (fde 
length); return the 
opJde-cap. 

Set m = min[ L -R , a 1. 
Invoke 
R E A D _ F I L E ( o ~ i a p ,  
a, m) to  COPY w (R .m 1 
to  reg(a,m)- If n = d ,  
return immediitely with 
whatever u in the file, 
reg ( R  .W -R ). 

Invoke 
WRITE_FILE(op_fe_cap, 
A, n) as for pipe, plus 
advance L to L +a .  

Invoke 
CLOSEJILE(opxile_cap) 
to  deallocate the open-file 
descriptor block. 

Device 

Verify that T-cq mfers 
to M unopened device. 
UK OPENqEV(TAap, 
iw) to initiaIixe an open- 
device descriptor bbck in 
which R = 0 or W = 0, 
s ~ ~ ~ r d i n g  m the device k 
input or output; return 
the op-dev_cap. 

~~ 

Invoke 
READ-DEV(op>ey_cap, 
a, m) M for f&. If n = d ,  
return immedii with 
whatever input m 
avaihhk, ref (R .W -R ). 
(No effect for outpat 
device.) 

Invoke 
W RITEJ)EV(o&cv>p, 
a, n) M for pipe. (No 
effect for input dcvicc.) 

Invoke 
CL OSE-DEV( o p _ d e y ~ )  
to deallocate the open- 
device ‘descriptor block. 

and context. Each “port” is a capability for an open pipe, file, or device. The “context” is a 

set of variables characterizing the environment in which the process operates; it includea the 

current working directory, the command directory, a link to the parent process, a l i k e d  lit of 

spawned processes, and a signal variable that counts the number of spawned processes whose 

execution is yet incomplete. Figure 4 illustrates the format of a user process descriptor block. 
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stateword 

PORTS 

0 I default input I 

pointer to  
virtual memory 

CONTEXT 

ARGS 

pi 
argument list 

CD 

WD 

signal 

parent 

children 

command dir. 
~ 

working dir. 

FIGURE 4. A user process is a virtual machine created for the purpose of executing a given 
program. It contains a primitive procese, a virtual memory holding the given program, a list 
of arguments supplied at the time of call, a list of ports, and a set of context variables. By 
convention, PORTS[O] is the default input and PORTS[l] is the default output; these two 
ports are bound to pipes, files, or devices when the process ie created. The process c a n  open 
other ports as well after it commences execution. 

A new user process is created by a FORK operation. The creator is called the “parent” 

and the new process a “child”. A parent can exercise control over its children by resuming, 

suspending, or killing them. A parent can stop and wait for its children to complete their tasks  

by a join operation, and a child can signal its completion by an exit operation. Table 8 

summarizes. 
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TABLE 8: Specification of User Proceas Operations (Level 13) 

Form of Call Effect 

up-cap := FORK(fi1e-cap, param, in, out) 

EXIT 

SUSPEND( up-cap) 

RESUME( u p-cap) 

op-T-cap := OPEN(T-cap.ru) 

Allocate a user proceu dexriptor block. Create a rurpended 
primitive proctu and rtore ita index in a new user-proccu 
capability. Create a virtud memory and load the executable 
file denoted by fde-cap. Copy the punmeten into the 
ARGS Imt. Verify that ir and .ut are capabilities for pipes, 
fila, or deviceo; if so, open ir for readiig and put the open- 
capability in PORTS(O1, and open d for writing and put 
the open-capability in PORTS(l1. 

Wait until caller’r context variable, r i d  ia A, then return. 

Terminate the designated umer proccu, but only if it ia a 
child of the c a r .  T h i  eat& destroying the primitive 
procar and virtual memory, closiig open pipes, fb, or 
devica connected to ports, rekaring the storage held by the 
dacriptor block, and removing the deleted proccu from the 
h t  of the cder’r children. 

Terminate the c d e r  procar and add 1 to the rigad variable 
of the parent proccu. 

Put  the primitive procar contained within the u r n  proccu 
L‘up-cap’’ into the ruapended date, bat only if the ulkr b 
the parent of proccu “up-cap”. 

Put  the primitive procw contained within the user proccu 
“up-cap” into the ready state, but only if the c&r in the 
parent of procen “up-cap”. 

Invoke the OPEN command in Level 12, store a copy of the 
result in the next avdnbk pmition in the PORTS table and 
return the result to the caller (T ia pipe. file, or devicd. 

Notice that an OPEN operation appears in Table 8. This OPEN operation hides the 

Level-12 OPEN from higher levels. It allows Level 13 to store copies of all open-object 

capabilities in the PORTS table. When a process terminates, Level 13 can assure that all open 

objects are clo-ked by invoking the Level-12 CLOSE operation for each entry in the PORTS 

table. 

. . - . .  . -  
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9. DIRECTORIES (Level 14) 

Level 14 is responsible for managing a hierarchy of directories containing capabilities for 

sharable objects. In our hypothetical system, these a re  pipes, files, devices, directories, and 

user processes; capabilities for open pipes, files, and devices are not sharable and cannot appear 

in directories. A hierarchy arises because a directory can contain capabilities for subordinate 

directories. 

A directory is a table that matches an external name, stored as a string of characters, 

with an access code and a capability. In a tree of directories, the concatenated sequence of 

external names from the root to a given object serves as a unique, system-wide external name 

for that object. A directory system of this kind has been implemented on the Cambridge CAP 

root e 
- .  

e denning a. a b  tic y 

net-hosts brown 
laser e clock 0 0 nroff e eqn a d e  t I passwd 

terminal 

FIGURE 5. A directory hierarchy can be depicted as an inverted tree whose topmost node is 
called “root”. Some directories are permanently reserved for specific purposes. For example, 
the deu directory lists all the external devices of the system. The lib directory lists the library 
of all the executable programs maintained by the system’s administration. A U I C ~  directory 
contains a subdirectory for each anthorhed user; that subdirectory is the root ofa subtree 
belonging to that user. In UNIX, the unique external name of an object is formed by 
concatenating the external names along the path &om the root, separated by slash (/) and 
omitting “root”. Thus the laser printer’s external name is “/dev/laser”. 
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The principal operation of Level 14 is a search command that locates and returns the 

capability corresponding to a given external name. Thus the directory level is merely a 

mechanism for mapping external to internal names. Only one type of capability can be 

mapped to an object at this level: a directory capability. All other capabilities must be 

presented to their respective levels for interpretation. Information about object attributes, 

such as ownership or time of last use, is not kept in directories; it is kept in the object 

descriptor blocks within the object manager levels. 

I I 
Itdevtt 

FIGURE 8. A directory is a table matching an external name String with an acceas code and 
a capability. Every directory containe a capability pointing to ita immediate parent and a 
capability pointing to itsee the eel€-capability ie can be nsed to till in the parent entry in a 
new subordinate directory. & c a w  directoriee are at a higher level than files, the file system 
can be wed to etare directories. A directory containing d y  the eelf and parent entries ie 
considered empty. 
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The requirement for system-wide unique names implies that the directory level also has 

the responsibility for ensuring that portions of the directory hierarchy resident on each machine 

are consistent. This can be accomplished by methods for replication in a distributed database 

system [Seli80]. To control the number of update messages in a large system, the full directory 

database may be kept on only a small subset of machines (e.g., two or three) implementing a 

stable store. Copies of the views of the directory database being accessed by a given user can 

be stored in a workstation or other local system after that user logs in. Operations that modify 

an entry in a directory must send updates to the stable-store machines, which relay them to  

affected workstations. 

Specifications of the principal operations of the directory level are given in Table 9. 

These operations allow higher-level programs to create objects and store capabilities for them 

in direcfories, This table is not a complete specification of a directory manager; for example, it 

contains no command to change the name and access fields of a directory entry. 

- 

The attach operation is used to create new new entry in a directory. The access field of 

the capability returned by a search operation will be the conjunction of the entry’s access code 

and the access field already in the capability. 

In the special case of attaching a directory to a directory, the attach operation must also 

define the parent of the newly attached directory. The operation fails if a parent is already 

defined (see Figure 6). The detach operation only removes entries from directories but has no 

effect on the object to which a capability points.. To destroy an object, the destroy operation 

of the appropriate level must be used. To minimize inadvertent deletions, the destroy-directory 

operation fails if applied to a nonempty directory. 

The attach and detach operations must notify the stable store so that changes become 

effective throughout the system. To keep this simple, we have required a) that an empty 
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TABLE 9 Specification of a Directory Manager Interface (Level 14). 

Form of Call Effect 

dir-cap := CREATEDIR(acceu) AbCAte an empty directory. Return a capability with i k  
permhiin bit. net to  the given acceu code. (Thu dimtory 
i not attached to the dimtory t m . )  

Dertroy (remove) the given ditectory. (Fib if the dimtory 
i nonempty.) 

Make an entry c d e d  rrme in the given directory (dir-cap); 
Itore in it the given object-capability (dj-cap) and the 
given acceu code. If obj-ecp denoter a directory, set i k  
parent entry from the self entry of the dinctory hr-crp. 
Notify the dimtory s tabk store of the change. (Faib if the 
name already exists in the dimtory 4ir-c.p. if the dimtory 
dir-crp u not attached, or if 06j-ecp denota  an already- 
attached d i t o r y . )  

Remove the entry of the given lumc from the given 
d m t o r y .  Notify the dimtory rtable store of the change. 
(F& if the name d o n  not exist in the given dimtory or if 
the given dircctory & nonempty.) 

Find the entry of the given nrmc in the given dircctory and 
return a copy of the associated capability. Set the acccu 
field in the returned capability to the minimum privilege 
enabled by the a c c c ~ .  fields of the dimtory entry and of the 
capability. ( F a  if the n m e  doer not exist in the given 
directory.) 

In a segment of the  calkr'r virtual memory, return a copy of 
the contents of the dimtory. (A user-level program can 
interrogate the other lev& for other information about the 
objects lirted in the d m t o r y  - e.&., date of lart change.) 

DES TROY -DIR( du-cap ) 

ATTACH(obj-cap, du-cap, name, acceu) 

DETACH(du-cap, name) 

obj-cap := SEARCH(dir-cap, name) 

oeg := LIST(dir-cap) 

directory must first be attached to the global directory tree before entries are made in it, and 

b) that a directory must be empty before being detached. A more complicated notification 

mechanism will be needed if a process is allowed to construct a directory subtree before 

attaching its root to the global directory tree. 
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10. SHELL (Level 15) 

36 

Most users of the system spend most of their time employing existing programs, not 

writing new ones. When a user logs in, the operating system creates a user process containing 

a copy of the shell program with its default input connected to the user’s keyboard and its 

default output connected to the user’s display. The shell is the program that listens to the 

user’s terminal and interprets the input as commands to invoke existing programs in specified 

combinations and with specified inputs. 

The shell scans each complete line of input to pick out the names of programs to be 

invoked and the values of arguments to be passed to them. For each program called in this 

way, the shell creates a user process. The user processes are connected according to the data 

flow specified in the command line. 

Operations of substantial complexity can be programmed in the commrind.language of the 

UNIX shell. For example, the operations that format then print a file named “text” can be set 

in motion by the command line: 

- 

tbl < text 1 eqn I lptroff > output 

The first program is t b f ,  which scans the data on its input stream and replaces descriptions of 

tables of information with the necessary formatting commands. The “<” symbol indicates 

that tbf is to  take its input from the file “text”. The output of tbl is directed by a pipe (the “I” 

symbol) to the input of eqn, which replaces descriptions of equations with the necessary 

formatting commands. The output of eqn is then piped to lptroff,  which generates the 

commands for the laser printer. Finally, the “>” symbol indicates that the output of fptroffis 

to be placed in a file named “output”. If “> output” were replaced with ‘‘1 laser”, the data 

would instead be sent directly to the laser printer. 



July 10, 1984 57 

Having identified itie -eoiiiponsnta of a ccmmand .!in,=, the she!! obtains capabilities for 

them by a series of commands: 

c l  := SEARCH(CD, “tbl”); 
c2 := SEARCH( WD, “text”); 
c3 := CREATEPIPEO; 
c4 := SEARCH(CD, “eqn”); 
c5 := CREATEPIPEO; 
c6 := SEARCH(CD, “lptroff”); 
c7 := CREATEFILE(); 
ATTACH(c7, WD, “output”, all); 

The variable “CD” holds a capability for a commands directory and “WD” holds a capability 

for the current working directory. Both CD and W D  are part of the shell’s context (see 

Figure 4). 

The shell then creates and resumes user processes that execute the three- components of 

the pipeline and awaits their completion: 

RESUME( FORK(c1, -, ~ 2 ,  ~ 3 )  ); 
RESUME( FORK(c4, -, ~ 3 ,  ~ 5 )  ); 
RESUME( FORK(c6, -, ~ 5 ,  c?) ); 
JOIN (3); 

After the JOIN returns, the shell can kill these processes and acknowledge completion of the 

eniire command to the user (by a “pr~mpt” character!. 

If the specification “< text” were omitted, the shell would have connected t M  to the 

default input, which is the same as its own, namely the terminal keyboard. In this case, the 

second search command would be omitted and the first fork operation would be 

FORK(c1, -, PORTS[O], ~ 3 )  

Similarly, if ‘‘> output’’ were omitted, the shell would have connected lpttoffto the default 

output, the shell’s PORTS[l]. 
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If an.elaborate command-line is to be performed .often, typing it can become tedious. 

UNIX encourages users to store complicated commands in executable files called shell- scripts 

that become simpler commands. A file named l p  might be created with the contents: 

tbl < $1 I eqn 1 lptroff > $2 

where the names of input and output files have been replaced by variables $1 and $2. When 

the command l p  is invoked, the variables $1 and $2 are replaced by the arguments following 

the command. For example, typing 

lp text output 

would substitute “text” for $1 and “output” for $2 and so would have exactly the same effect 

as the original command line. - ?., 
- .  .- 1_ 

11. INITIALIZATION 

One small but essential piece of an operating system has not been discussed -- the method 

of starting up the system. The startup procedure, called a bootstrap sequence, begins with a 

very short program copied into the low end of main memory from a permanent read-only 

memory. This program loads a longer program from the disk, which then takes control and 

loads the operating system itself. Finally, the operating system creates a special login process 

connected to each terminal of the system. 

When a user correctly types an identifier and a password, the login process will create a 

shell process connected to the same terminal. When the user types a logout command, the 

shell process will exit and the login process will resume its vigil over the terminal. 
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12. CONCLUSION 

We have used the levels model to describe the functions of contemporary multi-machine 

operating systems. This description shows how i t  is possible to systematically hide the  physical 

locations of all sharable objects and yet be able to locate them quickly when given a name in 

the directory hierarchy. 

The directory function can be generalized from its traditional role by storing capabilities, 

rather than file identifiers, in directory entries. No user machine need have a full, local copy of 

the directory structure; it need only encache the view with which i t  is currently working. The 

full structure is maintained by a small group of machines implementing a stable store. 

The model can deal with heterogeneous systems consisting of general purpose user 

machines, such as workstations, and special purpose machines, such as stable stora,  file 

servers, and supercomputers. Only the user machines need contain a full operating system; the 

special purpose machines require only a simple operating system capable of managing local 

tasks and communicating on the network. 

.- 
- 

The levels model is based on the same principle found in nature to organize many scalea 

of space and time. *4t each !eve1 of abstraction there are well defined rules of interaction for 

the objects visible at that level; the rules can be understood without detailed knowledge of the 

smaller elements making up those objects. The many parts of an operating system cannot be 

fully understood without recourse to  this principle. 
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